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BETTER INFERENCES FROM POPULATION-DYNAMICS EXPERIMENTS
USING MONTE CARLO STATE-SPACE LIKELIHOOD METHODS

PERRY DE VALPINE1

National Center for Ecological Analysis and Synthesis, 735 State Street, Suite 300, Santa Barbara, California 93101 USA

Abstract. In experimental population ecology, there is often a gap between realistic
models used to hypothesize about population dynamics and statistical models used to an-
alyze data. Ecologists routinely conduct experiments where the data from each replicate
are short time series of estimated population abundances structured by stage, species, and/
or other information, and the conventional test for treatment effects uses a general linear
model (GLM) such as analysis of variance (ANOVA). However, GLMs do not incorporate
demographic relationships between abundances through time. An alternative is to use pop-
ulation-dynamics models as frameworks for statistical hypothesis testing. This approach
requires general methods for fitting structured population models that can incorporate both
process noise (stochastic dynamics) and observation error (inaccurate data). This paper
presents such methods and compares them to GLMs for testing population-dynamics hy-
potheses from experiments. The methods are Monte Carlo state-space likelihood methods,
including a basic Monte Carlo integration method and a recently developed Monte Carlo
kernel likelihood method.

Three simulated examples of population-dynamics experiments were used to compare
analysis with a population model to ANOVA, analysis of covariance (ANCOVA), and
repeated-measures ANOVA. The examples considered manipulations of host-plant growth
conditions, causing decreased survival and increased fecundity; predator addition to in-
vestigate a behaviorally mediated change in prey demography; and changed host-plant
growth conditions with a more complex model for herbivore dynamics than the one used
for analysis. For the first example, a population model gave much higher statistical power
than any of the ANOVA methods and provides greater biological insight. For the second
example, ANOVA models are not suited to test for the behavioral effect, but a population
model detected it with high statistical power. The third example suggests that even incorrect
biological structure can provide better inferences than omitting all biological structure. The
likelihood methods presented here make analysis with structured population models feasible
for a wide range of models incorporating process noise and observation error, thus offering
higher statistical power and greater biological insight for population-dynamics experiments.

Key words: kernel density estimation; measurement error; Monte Carlo maximum likelihood;
population dynamics; population model fitting; process error; stage-structured demography; state-
space model, nonlinear; statistical power.

INTRODUCTION

In experimental population ecology there is often a
gap between realistic models used to hypothesize about
population dynamics and statistical models used to an-
alyze data (Dennis et al. 1995, Kendall et al. 1999).
Depending on the phenomena under study, realistic
models might include stage-structured demography,
nonlinear species interactions, movement, behavior, or
other complicated processes (Metz and Diekmann
1986, Tuljapurkar and Caswell 1997, Gurney and Nis-
bet 1998). On the other hand, experiments produce data
that might have the potential to distinguish between
hypotheses about such processes, but they are analyzed
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with models—most commonly general linear models
(GLMs) such as analysis of variance (ANOVA) and
linear regression—that do not incorporate these pro-
cesses. This disjunction limits ecologists’ ability to in-
vestigate population dynamics using experiments.

Here I present a general method for fitting stage-
structured population models to data and compare in-
ference using population models to ANOVA, ANCO-
VA, and repeated-measures ANOVA. The idea of an-
alyzing population data with population models has a
long history (Kendall et al. 1999, Bjornstad and Gren-
fell 2001) but has been used almost exclusively for
long observational time series rather than for replicated
experimental time series, with a few exceptions such
as by Dennis et al. (1995, 2001), Bjornstad et al. (1998,
2001), Ives et al. (1999), and Gibson et al. (1999). I
examine the potential for population models to com-
plement or replace analysis-of-variance models (and
other non-dynamic models) as a framework for de-
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tecting treatment effects in experimental population
time-series data.

The methods I present use a state-space model struc-
ture to incorporate both process noise (PN) and ob-
servation error (OE) in population models. ‘‘Process
noise’’ refers to stochasticity in population dynamics,
and ‘‘observation error’’ refers to inaccuracy in ob-
servations. The foremost obstacle to widespread use of
population models as statistical frameworks is the lack
of general methods for fitting complex models to data
incorporating both PN and OE. A related difficulty is
that realistic models often include unobserved vari-
ables, such as stage classes or species. Even for the
simulated examples given here, incorporation of PN,
OE, and incomplete observations was necessary for the
examples to be realistic. Because state-space likelihood
calculations require high-dimensional integration,
Monte Carlo numerical integration methods are used
for maximum-likelihood parameter estimation (and
hence likelihood-ratio hypothesis testing).

In recent years, methods from the statistical literature
for likelihood-based inference incorporating PN and
OE have filtered into ecology, mostly for fisheries time
series, with classical maximum likelihood for linear
models (Mendelssohn 1988, Sullivan 1992, Pella 1993,
Gudmundsson 1994, Schnute 1994, Freeman and Kirk-
wood 1995, Kimura et al. 1996), Bayesian analysis for
relatively simple, discrete-time, nonlinear models (Mc-
Allister et al. 1994, Bjornstad et al. 1999, Meyer and
Millar 1999, Quinn and Deriso 1999, Millar and Meyer
2000), and classical maximum likelihood for similar
nonlinear models (de Valpine and Hastings 2002), but
also for more complex models of plant–pathogen dy-
namics (Gibson and Renshaw 1998). The methods pre-
sented here give Monte Carlo approximate likelihood
calculations for structured population models with PN
and OE, which also naturally address the problem of
incomplete observations. The models could include ap-
proximately continuous stage structure, multiple spe-
cies, spatial structure, behavior, or almost any other
process, subject to computational limitations that are
not trivial. These methods are used here to compare
between ANOVA and population models for testing
experimental hypotheses from simulated data. The
three examples include stage-structured prey dynamics,
predation with a Type II functional response, and anal-
ysis of data generated from a more complicated model
than the one used for fitting.

The next section introduces the differences between
ANOVA models and population models as frameworks
for hypothesis testing. Then I introduce the state-space
framework for incorporating PN and OE and introduce
methods for Monte Carlo maximum-likelihood esti-
mation. Finally I give three examples comparing pop-
ulation models to GLMs in terms of statistical power
and biologically meaningful inference.

ANOVA VS. POPULATION MODELS

Consider a hypothetical experiment to ask whether
populations of an herbivore have different dynamics in
different growth conditions. Suppose an experiment is
run with replicates of each set of conditions, and the
data comprise surveys of different stage classes at sev-
eral times. Conventionally, ANOVA or repeated-mea-
sures ANOVA might be used to analyze this experi-
ment. The latter model includes a static effect of the
growth conditions on abundance of each stage class,
with time incorporated as if it were a treatment factor
or a random effect. To test for a treatment effect, one
fits a model to the data under null and alternative hy-
potheses and calculates the P-value significance level.
The shortcoming of ANOVA here is that the model
omits demographic relationships between numbers at
one time and numbers at the previous time in the same
or previous life stages. An alternative approach would
be to use a stochastic, structured population model as
the framework for hypothesis testing. A stochastic pop-
ulation model defines a distribution of possible obser-
vations, which may be difficult to calculate but can, in
principle, be used for approximate likelihood-ratio hy-
pothesis testing. In this way, a biological model can
provide a tighter link between hypothesized processes
and statistical tests to detect the patterns produced by
those processes.

With a population model for this hypothetical ex-
periment, an example null hypothesis is that demo-
graphic parameters are the same between treatment
groups, with the alternative that parameters differ be-
tween groups. This can be tested by fitting models un-
der the null and alternative hypotheses using maxi-
mum-likelihood methods and estimating a P value with
asymptotic approximate likelihood-ratio distributions.
With this approach, all of the separate analyses that
might be conducted with ANOVA models can be united
under one modeling framework, and hypotheses that
are difficult to consider with ANOVA can be simple
to express with a population model.

Maximum-likelihood estimation and likelihood-ratio
testing are useful for a number of reasons (e.g., Dennis
et al. 1995, Hilborn and Mangel 1997, Severini 2000).
Roughly speaking, as the amount of data increases,
maximum-likelihood parameter estimates (MLEs) be-
come unbiased, normally distributed, and have the min-
imum variance possible among estimation schemes.
MLEs may be thought of as ‘‘optimal’’ in these specific
senses. ANOVA has a close relationship to likelihood-
ratio tests because, as the amount of data increases,
ANOVA converges to being identical with a likelihood-
ratio test. Thus hypothesis testing is conceptually sim-
ilar for an ANOVA model and a population model:
both compare null and alternative hypotheses in ways
that are rooted in asymptotic likelihood theory.

Many other types of population-dynamics hypothe-
ses are inaccessible to ANOVA. For example, hypoth-
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eses about behavioral effects on demographic rates
such as when prey avoid predators (see Examples: Ex-
ample 2, below; Schmitz et al. 1997, Peacor and Werner
2001), ontogenetic changes in species interactions (Po-
lis and Strong 1996, Lundvall et al. 1999), movement
and spatial dynamics (Kareiva 1987, Walde 1991, Ell-
ner et al. 2001), intraguild predation (Polis 1991, Ro-
senheim et al. 1995), indirect effects (Strauss 1991,
Wootton 1994), and emergent impacts of multiple pred-
ators (Sih et al. 1998) might all be studied with pop-
ulation-dynamics experiments. However, even when it
is feasible to conduct experiments that might reveal
effects of these processes, ANOVA is poorly suited to
detect those effects because it omits the biological re-
lationships between different species and life stages.

In summary, a key for conducting estimation and
inference with general model structures is the ability
to calculate likelihood values. Calculating likelihoods
and finding maximum-likelihood parameters are com-
plicated for structured population models that include
both process noise and observation error, and they are
the central technical challenges addressed by this paper.

STATE-SPACE AND MONTE CARLO LIKELIHOODS

The central problem is to find maximum-likelihood
parameter estimates for any population model that in-
cludes process noise (PN) and observation error (OE).
First we must consider the form of the likelihood itself,
which involves a state-space model or missing-data
model framework (Harvey 1989, Schnute 1994, Robert
and Casella 1999, de Valpine and Hastings 2002). The
term ‘‘state space’’ refers to the mathematical space of
all possible true population trajectories, which are
jointly distributed with any set of observations.

There are three fundamental types of quantities in-
volved: states, observations, and parameters. The states
describe the true (but unknown) dynamics of the pop-
ulation. For example, the states may be the true stage-
class abundances through time and space. The obser-
vations are estimates of some or all of the states (or of
functions of the states). For example, the observations
might be estimates of only adults at several times, or
of eggs, juveniles, and adults, or of adult numbers and
stage-class proportions. Parameters are the usual sorts
of birth, growth, and survival rates of population mod-
els, and they are not treated as random variables (i.e.,
this paper does not take a Bayesian approach). Param-
eters will be written together in a vector, Q.

For each replicate, let all of the population states
through time be listed as a vector, X, which includes
all stage structure, all species, and all times. It is a full
record of the trajectory of the system through time.
Similarly, let all of the random PN values that affect
the population trajectory through time be a vector, n.
Given parameters Q, the model takes the PNs and pro-
duces the population states:

X 5 F (n).Q (1)

To incorporate OE, let all of the random values that
cause OE be a vector, «, and denote the model of how
observations depend on states and OEs as:

Y 5 G (X, «).Q (2)

The likelihood of the observations is defined as the
probability density value of the observations, as a func-
tion of the parameters. States, X, and observations, Y,
are jointly distributed random variables, which are
functions of the random variables n and « as well as
the parameters, Q. None of the elements of X and Y
are necessarily independent, and only the Y are known.
The likelihood of the observations is thus the marginal
probability of the observations:

L(Q) 5 P (Y, X) dX (3)E Q

where PQ is the joint probability density of states and
observations, which is defined by the models, Eqs. 1
and 2.

An alternative way to view the likelihood is to focus
on PNs rather than population states. Since the PNs
determine the population states, we could view the ran-
dom variables of interest as n and Y, rather than X and
Y. Then the likelihood can be written as

L(Q) 5 P (Y, n) dn (4)E Q

where PQ(Y, n) is the joint probability of Y and n.
Where there is no room for confusion, I use P or PQ

in a generic way for probability density, with the ar-
guments indicating what probability density is consid-
ered. Thus PQ(Y, n) is the probability density of noises
and observations, while PQ(Y, X) is the probability
density of states and observations. The two forms of
the likelihood, Eqs. 3 and 4, are equal, but for the
examples later Eq. 4 is useful, so I will use it from
here on. (Note that it would also be possible to work
with the space of random variables affecting individ-
uals in an individual-based model, but this is typically
very high dimensional.)

In an experimental situation with N replicates, the
total likelihood is a product of integrals of the form in
Eq. 4:

N

L(Q) 5 P (Y , n; i) dn (5)P E Q i
i51

where Yi is the data vector for experimental unit i, and
PQ(Yi, n; i) is the joint density of Yi and n for that
replicate. Typically this density function would be the
same for different replicates of the same treatment
group but different across treatment groups. If one can
obtain maximum-likelihood estimates under null and
alternative hypotheses, then P values can be estimated
using the standard likelihood approximation that
22 (log(L(Q0)/L(QALT))) ; (e.g., Hilborn and Man-2xdf
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gel 1997, Severini 2000). Here L(Q0) and L(QALT) are
the maximum likelihoods under null and alternative
hypotheses, respectively; df is the difference in the
number of parameters between null and alternative hy-
potheses; and is the chi-squared distribution with2xdf

df degrees of freedom.
The challenge is to calculate these likelihoods and

find maximum-likelihood parameter estimates (MLEs).
For nonlinear, non-Gaussian models, the integral may
be high dimensional and have no closed-form solution.
Approximating high-dimensional likelihood integrals
numerically has been an intense focus in statistics re-
search in recent years (e.g., Gilks et al. 1996, Robert
and Casella 1999). In simple problems, one can use a
discrete grid to approximate the range of values of the
integration variables, but in high-dimensional problems
grids become impractical. For state-space models that
are Markov processes with a low-dimensional state
space at each time step, the likelihood can be factored
into sequential integrals that are feasible by grid meth-
ods (Kitagawa 1987, de Valpine and Hastings 2002),
but this approach is impractical for higher dimensional
state variables. The main alternatives to grid methods
for high-dimensional integrations are Monte Carlo
methods (Carlin et al. 1992, Geyer and Thompson
1992, Kitagawa 1996, 1998, Durbin and Koopman
1997, 2000, Shephard and Pitt 1997, Tanizaki and Mar-
iano 1998, Pitt and Shephard 1999, Doucet et al. 2001).
Next I describe basic Monte Carlo integration as well
as a new method, the Monte Carlo Kernel Likelihood
method, which, for stage-structured population models
of experiments, is faster than several other potential
methods (P. de Valpine, unpublished manuscript).

MONTE CARLO LIKELIHOODS AND

LIKELIHOOD MAXIMIZATION

Basic Monte Carlo integration and
importance sampling

The integral (Eq. 4) can be written as

L(Q) 5 P(Y z n)P(n) dn. (6)E
In basic Monte Carlo integration (Robert and Casella
1999), one obtains a large sample of points {nj}, j 5 1,
. . . , M from P(n), and then uses the approximation

M1
L(Q) ø P(Y z n ) (7)O jM j51

and, for multiple replicates,

N M1
L(Q) ø P(Y z n ; i). (8)P O i jMi51 j51

As the Monte Carlo sample size increases, the approx-
imation increases in accuracy. I refer to this as the
‘‘Monte Carlo direct’’ (MCD) method.

The approximation (Expression 8) provides one op-
tion for calculating the likelihood (Eq. 5), which can

then be maximized over Q, and is used in the second
example below. As an example, if the process noise is
modeled with normal random variables, one can draw
a large normal sample and use them in Expression 8
to approximate the likelihood. The same sample can
be used for all vales of Q (Robert and Casella 1999)
so that the optimization surface can be smooth.

Unfortunately MCD is generally inefficient because
most values of n give small P(Yi z n), with rare n values
giving large P(Yi z n). There are many approaches to
improving efficiency, and here I mention only one of
the most useful—importance sampling. This uses the
relationship

P(n)
P(Y z n)P(n) dn 5 P(Y z n) P (n) dn (9)E E SP (n)S

where the density PS (n) is called the ‘‘sampling’’ den-
sity. Then the Monte Carlo approximation uses a sam-
ple of points {nj}, j 5 1, . . . , M from PS (n) to calculate

M1 P(n )jL(Q) ø P(Y z n ) (10)O jM P (n )j51 S j

where the ratio P(nj)/PS (ni) is called an ‘‘importance
weight.’’ Importance sampling can greatly improve ef-
ficiency if PS (n) is similar to P(n z Y), the distribution
of states given observations. In fact, if PS (n) 5 P(n z Y),
then every summand is just P(Y), and the approxi-
mation is exact with only one sample, M 5 1. The
average (Expression 10) can behave very badly if the
variance of the summands is infinite, which can happen
if the tails of PS (n) are lighter than the tails of P(n z Y).
Thus a goal of importance sampling is to find PS (n)
close of P(n z Y) while avoiding too-light tails (Robert
and Casella 1999).

Monte Carlo kernel likelihoods

Even with importance sampling and other improve-
ments, basic Monte Carlo integration lacks efficiency
for high-dimensional state-space problems. A more ef-
ficient method, the Monte Carlo kernel likelihood
(MCKL) method (P. de Valpine, unpublished manu-
script) works by obtaining a sample of points in the
parameter space whose density is related to the like-
lihood surface, and this sample requires sampling from
P(Q, n z Y) under different parameters. (This is not a
Bayesian method, but it temporarily treats parameters
as having prior and posterior density functions, which
is mathematically similar to a Bayesian analysis.)

Suppose that the parameters have an initial distri-
bution, P(Q), which is wide and nearly flat (but still
proper, i.e., it integrates to 1). This will temporarily
play a role similar to a noninformative prior distribu-
tion in Bayesian analysis. Suppose that we can simulate
a random point sample from the conditional distribu-
tion of parameters and noises given observations,
P(Q, n1, . . . , nN z Y1, . . . , YN), which is proportional
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to P(Q) P(Yi, ni z Q). Here the subscripts on n andNP i51

Y index the N experimental replicates. The Q dimen-
sions of the sample are a sample from

L(Q z Y)P(Q)
CP

N

5 · · · P(Q) P(Y , n z Q) dn · · · dn (11)PE E i i 1 N
i51

which is the usual Bayesian ‘‘posterior’’, P(Q z Y) 5
L(Q z Y) P(Q)/CP, and where CP 5 # L(Q z Y) P(Q) dQ
is an unknown normalizing constant. Label the sample
by {Qj}, j 5 1, . . . , M.

There are two ways to estimate L(Q z Y)/CP from the
sample {Qj} and P(Q) using kernel density estimates.
For notation, if f (x) is a probability density, and {xj},
j 5 1, . . . , M is a sample from f, then a kernel density
estimate of f is

M1
f̂ (x) ø K (x, x ) (12)O h jM j51

where Kh is a kernel function with bandwidth h (Sil-
verman 1986, Scott 1992). For the common Gaussian
kernel, Kh is a normal density function with mean x
and standard deviation h, and the approach extends
naturally to multivariate samples and kernels. Define
f̃h (x) 5 # Kh(x, x9) f (x9) dx9. Then, for fixed h,

lim f̂ (x) 5 f̃ (x). (13)h
M→`

In practice, as M increases, h is decreased so that f̃ (x)
approaches f (x).

To estimate L(Q z Y)/CP, take P(Q z Y) as an impor-
tance sampling density for the integral # Kh(Q,
Q9)L(Q9 z Y) dQ9:

L(Q9 z Y)
L̃ (Q z Y) 5 K (Q, Q9) P(Q9 z Y) dQ9h E h P(Q9 z Y)

1
5 C K (Q, Q9) P(Q9 z Y) dQ9. (14)PE h P(Q9)

Then a Monte Carlo estimate for L̃h(Q z Y)/CP given the
sample {Qj} from P(Q z Y) is

Mˆ K (Q, Q )L(Q z Y) 1 h jø . (15)O
C M P(Q )j51P j

Even though CP is unknown, we can use Expression
15 to estimate maximum-likelihood parameters and
then use basic Monte Carlo integration to estimate the
likelihood value itself. Given an initial estimate of the
MLE, one can also use a focused prior with high density
near the MLE to obtain more efficient, accurate esti-
mates near the MLE than for a wide prior, but such
‘‘zooming in’’ requires more careful choice of h (P. de
Valpine, unpublished manuscript). Here we use only
wide priors and choice of h motivated by the asymp-
totically Gaussian shape of L near its maximum (Ap-
pendix).

The second way to estimate L(Q z Y)/CP from {Qj}
and P(Q) is by P̃h(Q z Y)/P(Q) where P̃h(Q z Y) can be
estimated by a kernel density estimate of the posterior
sample. This approach works well with wide priors,
but not with ‘‘zooming in’’ efficiency gains similar to
the first method, so it is less general and not used here.

Thus the problem is reduced to obtaining a sample
of points from P(Q, n1, . . . , nN z Y1, . . . , YN) and using
the Q dimensions to estimate likelihoods up to the un-
known constant CP. This approach also has the advan-
tage that it delivers an approximation of the entire like-
lihood surface, not just the maximum-likelihood esti-
mate (MLE). Once we obtain an MLE, its actual like-
lihood (i.e., not just up to an unknown constant) must
be approximated by basic Monte Carlo integration or
importance sampling (see Appendix). Obtaining the
sample of states and parameters given data is not trivial
because this can be very high dimensional, but the
computational method of Markov chain Monte Carlo
(MCMC) (Gilks et al. 1996, Robert and Casella 1999)
is designed for such situations. In the Appendix, I sum-
marize the MCMC algorithm used here.

EXAMPLES

I used the MCD (Monte Carlo direct) and MCKL
(Monte Carlo kernel likelihood) methods on simulated
experimental data to compare analysis with a popula-
tion model to ANOVA, ANCOVA, and repeated-mea-
sures ANOVA. The first example used simple, density-
independent population growth, with a treatment effect
that increases fecundity but decreases survival. The
second example used a treatment of adding a predator,
with effects via direct consumption as well as a be-
havioral change in prey demographic rates. I focused
on detecting the behavioral change. In these two ex-
amples, the comparison was idealized because I as-
sumed that the correct population-model structure was
known. Thus these examples compared the extreme
ends of a spectrum: no demographic structure (ANO-
VA) vs. correct demographic structure. In the third ex-
ample, the model that generated the data was more
complex than the population model used for analysis.
This example was similar to the first, but with data
generated from a model that included density depen-
dence, time-varying fecundity, and autocorrelated sur-
vival.

Each example used a stage-structured herbivore
model, with age-cohorts separated by day and with no
density dependence. The deterministic ‘‘skeleton’’
(sensu Tong 1990) of the model was

n(a, t) 5 n(a 2 1, t 2 1)S (z (t)) (16)E E

1 , a # DE

n(D 1 1, t) 5 n(D , t 2 1)h S (z (t)) (17)E E E EE E E

n(D 1 1, t) 5 n(D , t 2 1)h S (z (t)) (18)E J E EJ J J
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TABLE 1. Definitions of variables.

Symbol Definition

General state-space model
Yj

Xj

nj

«j

Q

Observation vector for replicate j
States of true population trajectory for replicate j
Process noise vector for replicate j
Observation error vector for replicate j
Parameter vector

All example models: states
A(t)
n(a, t)
n(a, t)E

n(a, t)J

Adults at time t
Number of age a individuals at time t, for a # DJ 1 1
Number of age a individuals at time t that are eggs, for a # DJ 1 1
Number of age a individuals at time t that are juveniles, for a # DJ 1 1

All example models: basic parameters
LE

LJ

as

bs

mb

sb

Length of egg stage
Length of juvenile stage
Logit transform of survival in average environment for stage s 5 E, J, or A
Standard deviation of logit transform of survival for stage s 5 E, J, or A
Mean value of gamma distribution for b
Standard deviation of gamma distribution b

All example models: process noises
b
zs

Ss(zs)

Per day birth rate of adults, gamma distributed across replicates
Process noise for survival of stage s 5 E, J, or A
Per day survival of stage s 5 E, J, or A

All example models: bookkeeping aids
E(t)
J(t)
DE

DJ

hEE

hEJ

hJJ

hJA

Total eggs at time t
Total juveniles at time t
Largest integer #LE

Largest integer #LE 1 LJ

5 LE 2 DE, fraction of n(DE, t) that are eggs at time t 1 1
5 1 2 hEE fraction of n(DE, t) that are juveniles at time t 1 1
5 (LJ 1 LE) 2 DJ, fraction of n(DJ, t) that are juveniles at time t 1 1
5 1 2 hJJ, fraction of n(DJ, t) that are adults at time t 1 1

Predation-model parameters (Example 2)
qs

gs

Inverse of the half saturation constant for predation on stage s 5 E or J
gs/qs is the maximum predation rate on stage s 5 E or J

More-complicated model parameters (Example 3)
r
«b

tb

d

Autocorrelation of zs for s 5 E, J, or A
Process noise for time-variation in fecundity
Standard deviation of «b

Density dependence of adults and juveniles on fecundity

n(a, t) 5 n(a 2 1, t 2 1)S (z (t)) (19)J J

(D 1 1) , a # DE J

n(D 1 1, t) 5 n(D , t 2 1)h S (z (t)) (20)J J J JJ J J

A(t) 5 [n(D 1 1, t 2 1) 1 n(D , t 2 1)hJ J J JA

1 A(t 2 1)]S (z (t)) (21)A A

n(1, t) 5 bA(t 2 1)S (z (t)). (22)E E

Definitions of all variables are given in Table 1. Equa-
tion 16 gives growth and mortality for the egg-only
day classes. Eqs. 17 and 18 give the egg and juvenile
portions of the egg-to-juvenile day class. Eq. 19 gives
growth and survival of juveniles, and Eq. 20 gives the
juvenile portion of the juvenile-to-adult day class. Eqs.
21 and 22 give adult dynamics and births, respectively.

The reason for allowing fractional maturation times
is that the Monte Carlo likelihood methods require pa-
rameters with continuous ranges of values, not just in-

tegers. To allow a continuous range of the stage-du-
ration parameters, I assumed that age cohorts are dis-
tinct by day but well mixed within days. This means
I defined an egg stage of 4.6 days to mean that 60%
of individuals have an egg stage of 4 days and the
remaining 40% have an egg stage of 5 days. This would
be realistic if, for example, molting occurs only during
a fixed time of day, so that individuals either molt at
that time one day or wait until that time the next day.
Note that for 1 # a # DE, n(a, t)E 5 n(a, t); the sub-
scripts ‘‘E’’ and ‘‘J’’ (or ‘‘J’’ and ‘‘A’’) are important
only for the day classes with both eggs and juveniles
(or juveniles and adults).

Process noise

For the examples here, I considered reproductive
rates that differ randomly between replicates but not
over time and survival rates that differ between rep-
licates and over time. For the survival rates, let SE, SJ,
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TABLE 2. Simulation parameter values for all three examples comparing a population model
to ANOVA, ANCOVA, and repeated-measures ANOVA.

Parameter T0 T1 T2 P PB IM,0 IM,1 IS,0 IS,1

mF

s2
F

SE(0)
SJ(0)
SA(0)
b
LE

LJ

4.0
1.0
0.9
0.8
0.7
0.1
4.0
6.0

6.0
1.0
0.877
0.777
0.677
0.1
4.0
6.0

8.0
1.0
0.86
0.76
0.66
0.1
4.0
6.0

4.0
1.0
0.9
0.8
0.7
0.1
4.0
6.0

4.0
1.0
0.88
0.8
0.7
0.1
4.0
6.5

4.0
1.0
0.9
0.8
0.7
0.1
4.0
6.0

6.0
1.0
0.877
0.777
0.677
0.1
4.0
6.0

4.0
1.0
0.9
0.8
0.7
0.1
4.0
6.0

6.0
1.0
0.877
0.777
0.677
0.1
4.0
6.0

qE

qJ

gE

gJ

···
···
···
···

···
···
···
···

···
···
···
···

0.025
0.0125
9.0
3.0

0.0125
0.00625
9.0
3.0

···
···
···
···

···
···
···
···

···
···
···
···

···
···
···
···

r
d
tb

···
···
···

···
···
···

···
···
···

···
···
···

···
···
···

0.6
0.01
0.1

0.6
0.01
0.1

0.6
0.05
0.1

0.6
0.05
0.1

Notes: Example 1 uses T0 (control, in all cases), T1 (small treatment effect), and T2 (large
treatment effect). Example 2 uses T0, P (predator without behavior effect) and PB (predator
with behavior effect) parameters. Example 3 uses mild (IM,0, IM,1) and strong (IS,0, IS,1) deviations
from the model (where I 5 incorrect model being used to fit data).

and SA be inverse logit transformations of normal de-
viates that change every two days:

a 1b z (t)s s se
S [z (t)] 5 (23)s s a 1b z (t)s s s1 1 e

z (t) ; N (0, 1) t odd (24)s

z (t) 5 z (t 2 1) t even (25)s s

where s 5 E, J, or A. The two-day periods reflect an
assumed time scale of variation of environmental con-
ditions. One could also let environmental variation be
autocorrelated, and/or have a time scale that is esti-
mated. For individual variation in fecundity, b for each
replicate is drawn from a gamma distribution. I let the
simulated experiments run for 40 days, so n is 61-
dimensional for each replicate—one dimension for b
and three dimensions for z 5 (zE, zJ, zA) for each of 20
two-day stretches.

Observation error

I assumed that all experiments started with known
initial conditions and that observations were made ev-
ery 10 days for 40 days. Observations were grouped
by stage class, and for each stage class the observed
values were normally distributed with means equal to
the true number and standard deviations equal to 0.1
3 (true number) 1 0.01:

D 11E

E(t) 5 n(a, t) (26)O E
a51

D 11J

J(t) 5 n(a, t) (27)O J
a5D 11E

Y ; N (s, 0.1s 1 0.01) (28)s,t

where s 5 E, J, or A and Ys,t is the estimate of stage s
at time t. This was motivated by the situation where

only a fraction of each replicate is sampled, and then
the sample is multiplied by the inverse of the fraction
to obtain an estimate of the total number, so the stan-
dard deviation scales with the mean. In addition to
being inaccurate, these observations represent incom-
plete information because they do not include within-
stage age structure, which is an essential part of the
true dynamics. The 0.01 term adds numerical regularity
to the algorithms when the true number is very small,
and can be interpreted as a tiny chance that even with
no individuals, an individual will mistakenly be count-
ed. I also assumed that, aside from the experiment of
interest, the investigators had studied their own obser-
vation process (i.e., by making replicate subsample
counts from the type of enclosures used in the exper-
iment) and know the model (Expression 28) for the
distribution of observations. Finally, the abundances
here are unscaled (e.g., the units could be 106 individ-
uals).

Example 1: Plant effects on herbivore demography

First I assumed that the experimental treatment was
to change host-plant growth conditions, such as by wa-
tering, fertilizing, or inducing secondary chemical de-
fenses, and that the effect was a shift in the herbivore’s
life-history pattern, with higher fecundity and lower
survival. This is a difficult situation for ANOVA be-
cause the number of adults at the end of the experiment
may be similar between treatment and control even
though the demographic trajectory that produced those
adults is different. I used 20 experimental units, with
10 each of control and treatment.

All examples used a Type I error rate of a 5 0.05.
Table 2 gives parameters for no effect (T0, 5 control
in all cases), small treatment effect (T1), and large treat-
ment effect (T2). Relative to the control, the log number
of adults at the end of the experiment in both treatment
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FIG. 1. Box-and-whisker plots on a log scale of obser-
vations of eggs, juveniles, and adults for Example 1 under
control (T0), small (T1), and large (T2) treatment effects. Dis-
tributions for T0 and T2 are horizontally offset for visual clar-
ity. Plots are from 1000 simulated trajectories, although for
each simulated experiment there are only 10 replicates. For
each box-and-whisker diagram, dashed horizontal lines of the
box show the 25th, 50th, and 75th percentiles, dashed ‘‘whis-
ker’’ lines extend to the most extreme value within 1.5 times
the interquartile range (i.e., difference between 25th and 75th
percentiles) above and below the 25th and 75th percentiles,
and dots show individual values beyond this range.

conditions had a similar mean but lower variance (Fig.
1). All examples used 100 simulated data sets of each
hypothetical experiment.

I considered three types of ANOVA, all with log-
transformed abundances and all for eggs, juveniles, or

adults separately: ANOVA on abundance at the end of
the experiment, repeated-measures ANOVA, and AN-
COVA with time as a covariate. The first ANOVA
amounts to a t test, and since the variances were gen-
erally unequal I used a Welch correction. For repeated-
measures ANOVA, the assumptions were violated be-
cause the variance increased through time, but I report
results anyway for comparative purposes. For AN-
COVA the assumptions were also not met, since the
log abundances did not increase linearly (over long
times they would, but these simulations do not reach
stable age structure) and the variances changed through
time. Also, in ANCOVA one typically first tests wheth-
er slopes are not different among groups and then tests
for significantly different intercepts assuming homog-
enous slopes. I considered an investigator seeking any
significant result, whether for different slopes or dif-
ferent intercepts if the slopes are similar, so I report
the proportion of data sets where either hypothesis was
rejected.

For analysis with the population model, I used as a
null hypothesis that all parameters were equal between
control and treatment, and as an alternative that mb, aE,
aJ, and aA may vary between control and treatment. For
Example 1 the MLEs were obtained using MCKL and
the Nelder-Mead simplex algorithm for maximization
(Press et al. 1992).

Example 2: Predator effects on herbivore
demography via behavior

Next I considered a predator–prey experiment, with
two questions of interest: whether (and how much) the
predator eats the herbivores, and whether the presence
of the predator causes behavioral changes in prey de-
mography, such as in behavioral trait-mediated indirect
effects. I focused on the second question because AN-
OVA is wholly unsuited to it. The predator was mod-
eled with a Type II functional response and with a
constant population size for simplicity. Mortality
caused by the predator was modeled by multiplying
egg survival by

2gES 5 exp (29)E,P 1 21 1 q E 1 q JE J

and juvenile survival by

2gJS 5 exp . (30)J,P 1 21 1 q E 1 q JE J

Under a Type II functional response, the egg mortality
rate from predation would be (gE)/(1 1 qEE 1 qJJ ), so
that after a day the fraction surviving would be Eq. 29,
and a similar explanation applies for juveniles (Eq. 30).
Usually there is a predator abundance in the numerator
of a Type II functional response, but since I assumed
constant predator numbers, their abundance was in-
corporated in gE and gJ.

Table 2 lists control (T0), no-behavior-predation (P),
and behavior-predation (PB) parameters. For PB, the



3072 PERRY DE VALPINE Ecology, Vol. 84, No. 11

parameters reflect increased juvenile movement to
avoid predators and increased adult movement to dis-
perse eggs, with the costs of 0.5-day-longer juvenile
development time and 0.02 decrease in the adult-sur-
vival parameter and with the consequence of slower
saturation of predation rates as prey density increases.
Each experiment consisted of T0 and either P or PB.

For analysis with the population model to detect the
effect on prey behavior, I used a null hypothesis that
all parameters were equal between treatment and con-
trol except for the presence of the predator in the treat-
ment (no predator corresponds to gE 5 gJ 5 0) and an
alternative that mb, aE, aJ, aA, LE, and LJ may vary be-
tween treatments. The likelihoods were approximated
with basic Monte Carlo integration and maximized with
the Nelder-Mead simplex algorithm (Press et al. 1992).
A Monte Carlo (MC) sample size of 5000 was used for
an initial maximization, followed by a second maxi-
mization with MC sample size of 20 000. Diagnostic
runs showed this protocol to be accurate.

Example 3: Plant effects on herbivore demography
with a more complex model

The final example used an experiment similar to Ex-
ample 1, but with data generated by a more complex
model than the population model used for analysis. Two
levels of deviation from model assumptions were used.
The more complex model included autocorrelation of
mortalities, fecundity that changed randomly every two
days, and density dependence for fecundity. Autocor-
relation of mortalities was implemented with a first-
order autoregressive model for zi, i 5 E, J, or A:

z (t 1 1) 5 rz (t) 1 « (t)i i i (31)

where r is the autocorrelation and «i(t) is normally
distributed and sequentially independent noise. To keep
variance of zi(t) equal to 1, as before, I set 5 1 22s«

r2. Time variation and density dependence of fecundity
were implemented by setting

2d[J(t)1A(t)]b(t) 5 [b 1 « (t)]eb (32)

where «b(t) is normal with mean zero and standard
deviation tb; d is a density-dependence parameter; and

plays the previous role of b: it is gamma-distributedb
across replicates. Model fitting was the same as for
Example 1. Parameter values for mild (IM,0, IM,1) and
strong (IS,0, IS,1) deviations from the model used for
fitting are given in Table 2.

RESULTS

Parameter estimates

Parameter estimates showed good estimation prop-
erties (Fig. 2). For example, for the six nonvariance
parameters of the control group (T0) of Example 1, there
was only mild bias in the parameters, such as an av-
erage mb estimate of 4.3 instead of the true value of
4.0. In addition, parameter estimates were correlated

in biologically intuitive ways, with higher mean fe-
cundity values associated with lower mean egg sur-
vival, higher mean juvenile survival, lower egg stage
length, and higher juvenile stage length. These corre-
lations make sense because, for example, similar egg
abundances might be produced by higher fecundity and
lower egg survival or lower fecundity and higher egg
survival, so that across a range of data sets, some will
tend to estimate the former and others the latter. Al-
ternating correlations between estimates of fecundity
and successive survival rates were discussed by Wood
(1994, 1997).

Statistical power

In all three examples the population-model analysis
gave higher power and more insightful inferences than
ANOVA. In Example 1, the distributions of log abun-
dance of eggs, juveniles, and adults overlapped sub-
stantially (Fig. 1), so ANOVA with the final 10 abun-
dances from control (T0) and treatment groups (T1 or
T2) had low power to detect the different means, with
highest power for the egg distributions (Fig. 3a and b).
Repeated-measures ANOVA improved power for an-
alyzing juveniles or adults, but the maximum power
was still only ;40%. ANCOVA produced higher power
but had the undesirable feature of inflated Type I error
rate, shown by ;20% rejection of the null when it was
true.

The population model had very high power, with
rejection of the null in all 100 simulations for both
treatment magnitudes. In fact, the P values for the pop-
ulation model were very small, much less that 1026

even for the small treatment effect. This is encouraging
because even if we had allowed all of the parameters
to vary between treatment and control, we would have
obtained 100% power; L(QALT) would be greater than
or equal to the value we obtained with fewer param-
eters, but the likelihood ratios we obtained were large
enough to reject under a chi-squared distribution with
df 5 10.

In Example 2, the distributions of eggs, juveniles,
and adults reflected the presence of the predator (Fig.
4). The direct effect of reducing population sizes was
strong—ANOVA could probably detect this with rea-
sonable power—but the additional behavior effect was
difficult to see intuitively. Comparing P with PB shows
that with the behavior effect there were slightly higher
abundances with lower variances than without the be-
havior effect. Each experiment, however, included 10
points from T0 and either P or PB, so the foregoing
comparison would not be possible. Loosely speaking,
the population model analysis ‘‘controls for’’ predation
and estimates any remaining demographic changes in
the prey. With no behavior effect, only three out of
100 null hypotheses were rejected, close to the ex-
pected Type I error rate of 5%. With the behavior effect,
the null hypothesis was rejected 81 out of 100 times.
Thus the population model had high power to detect



November 2003 3073INFERENCE WITH POPULATION MODELS

FIG. 2. Maximum-likelihood parameter estimates for the six nonvariance parameters of the control group from 100
simulated experiments of Example 1 (parameters T0). Each subplot shows the 100 maximum-likelihood parameters plotted
in two of the six dimensions. Each diagonal entry labels the horizontal axis of its column and the vertical axis of its row.

changes in demographic rates that were not intuitively
obvious. The power levels of these examples are a func-
tion of the magnitude of the simulated effects.

In Example 3, the abundance distributions decreased
nonlinearly, relative to Example 1, due to density de-
pendence. As in Example 1, analysis with a population
model provided higher power than the three varieties
of ANOVA (Table 3), and ANCOVA had inflated Type
I Error rate when the null (IM,0 or IS,0) is true. For the
mildly incorrect model (IM,0 IM,1), the population model
performed as in Example 1. For the strongly incorrect
model (IS,0, IS,1), power of the population model re-
mained nearly perfect when there was a true difference
(IS,1), but Type I error rate was inflated to 10% when
there was no true difference (IS,0). Diagnostic analyses
could be useful for evaluating and comparing different
model fits, but here the main point is that even ap-
proximately correct demographic structure can provide
higher power than omitting demographic structure—
but as model structure becomes more incorrect (IS,0,
IS,1), Type I error rate, power, or both, may degrade.

DISCUSSION

Why are population models so much more powerful
for detecting treatment effects than ANOVA models?

ANOVA does not generally incorporate dynamics or
multiple stages or species in a way that corresponds
closely with biologically motivated, demographic hy-
potheses. In analysis with a population model, the dis-
tribution of trajectories from a stochastic demographic
hypothesis is used to calculate likelihoods, so struc-
tured data enter naturally into a single analysis. The
distributions of stage classes through time under sto-
chastic population models with process noise (PN) and
observation error (OE) are not easy to calculate ana-
lytically, but they can be calculated numerically and
provide better evaluation of hypotheses with data than
ANOVA models.

Although the majority of population-dynamics ex-
periments are not analyzed with population models, a
relative handful of studies have been. These highlight
the value of the approach but offer less general methods
than those presented here. For example, Dennis et al.
(1995, 2001) used approximate likelihood-ratio tests
for experimental data where the likelihoods are rela-
tively easy to calculate because the data really have no
OE. Ives et al. (1999) and Klug et al. (2000) used linear
time-series models to investigate experimental-lake
time series. Bjornstad et al. (1998, 2001) fit time-lag
models to replicated time series of Indian meal moth
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FIG. 3. Statistical power for Example 1, showing prob-
ability of detecting treatment effect as a function of true effect
size. (A) Statistical power for rejecting the null hypothesis
of no treatment effect for Example 1 using the population
model or ANOVA, ANCOVA, or repeated-measures ANOVA
for log final abundance of eggs. (B) Statistical power for
Example 1 using ANOVA, ANCOVA, and repeated-measures
ANOVA for log final abundances of juveniles and adults.

FIG. 4. Box-and-whisker plots on a log scale of obser-
vations of eggs, juveniles, and adults for Example 2 under
control (T0), predator without behavior effect (P), and pred-
ator with behavior effect (PB). The population model rejected
the no-behavior hypothesis in 81% of cases when it was false.

(Plodia interpunctella) populations with or without a
virus and with or without a parasitoid, but they stopped
short of a classical hypothesis test. Wood (1994, 1997)
developed a method for fitting stage-structured models
with splines of age–time surfaces in a nonlikelihood
way, assuming a priori knowledge of stage lengths.
Finally, Gibson and Renshaw (1998) and Gibson et al.
(1999) give methods related to this paper in using
Bayesian posteriors to estimate frequentist conclusions.

Several implementation issues merit discussion. The
choice to work with population states, PN’s, or indi-
viduals has ramifications for choice of model and Mon-
te Carlo method. The examples here tracked a 10-di-
mensional age vector for 40 days. If the model had
been defined in terms of each population state (i.e., age
cohort), there would have been 400 dimensions for the
likelihood integral. One could design a Markov chain
Monte Carlo (MCMC) algorithm to sample these states
for each replicate (given observations) along with pa-
rameters. For most states (i.e., age-time abundances),
Metropolis-Hastings steps would involve at least the
probability of obtaining a particular state (e.g., by sur-

vival from the previous age at the previous time) and
the probability of obtaining the next state from that
state. Thus, there would be many state dimensions but
relatively low computational burden for MCMC moves
for each one. For models with density dependence,
changing a state could affect other transition proba-
bilities, which would increase the computational cost
of each MCMC move.

In contrast, by working with the space of process
noises, one can decrease the dimensionality but in-
crease the computational burden for MCMC moves in
each dimension. In the examples here, 61 PN dimen-
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TABLE 3. Probability of detecting treatment effect for ex-
ample 3.

Model

Probability

IM,0 IM,1 IS,0 IS,1

Population model 0.05 1.00 0.10 0.99

ANOVA
final eggs
final juveniles
final adults

0.05
0.05
0.05

0.23
0.13
0.05

0.05
0.04
0.04

0.30
0.06
0.05

ANCOVA
eggs
juveniles
adults

0.21
0.27
0.12

0.56
0.61
0.43

0.16
0.26
0.12

0.54
0.61
0.42

Repeated measures
eggs
juveniles
adults

0.05
0.05
0.05

0.24
0.19
0.12

0.05
0.04
0.05

0.21
0.18
0.12

Notes: IM,0 and IM,1 use mildly incorrect model structure,
while IS,0 and IS,1 use strongly incorrect model structure. Each
number is the fraction of 100 simulated experiments for which
the null hypothesis was rejected using a particular model. In
IM,0 and IS,0 the null hypothesis is true, while in IM,1 and IS,1

it is false.

sions determined the trajectory of a replicate. This gave
fewer dimensions (than 400), but a change in a single
noise value required recalculation of the entire popu-
lation trajectory after the time of that noise. The trade-
off between dimensionality and computation effort for
each dimension is connected to the type of model used.
The 61-dimensional approach here represented envi-
ronmental stochasticity, while the 400-dimensional ap-
proach could also include demographic stochasticity.
Both approaches have merit in the types of models they
can represent and the implementation and computa-
tional tradeoffs involved.

Choice of model, state, and noise vectors affects ef-
ficiency of Monte Carlo (MC) likelihood methods. In
general Monte Carlo kernel likelihood (MCKL) is more
efficient than basic MC integration, but efficiency of
MCKL depends on efficiency of its posterior-sampling
algorithm. The MCMC approach used here is the tip
of an iceberg of posterior-sampling possibilities. In ad-
dition to the many available improvements to MCMC
(Robert and Casella 1999), another promising approach
is joint parameter-state particle filtering (Doucet et al.
2001). Relative efficiency of basic MC integration in-
creases with the number of experimental replicates be-
cause the same state trajectories—the most computa-
tionally expensive step in calculating a summand of
Expression 10—can be used for every replicate in a
treatment group.

The example models here may be viewed as dis-
cretizations of the type of continuous time and age
model described by Gurney et al. (1983). Monte Carlo
likelihood methods could be used to fit more nearly
continuous models, i.e., with shorter stage classes, but
several challenges would arise. Numerical calculation

of state trajectories would be slower, and dimension-
ality of PN could be much higher. Since many thou-
sands of state trajectories are required for Monte Carlo
methods, these changes could create significant com-
putational challenges. In many cases a mildly discre-
tized model may be as biologically justified as a con-
tinuous-time model.

A major question for further investigation is how
much biological structure must be correctly known to
provide a useful model for inference. This study has
focused primarily on two extremes: ANOVA, which
has no biological structure, and a population model
with the correct structure. In analysis of real data, mod-
el structures may be at best roughly correct. The high
power of analysis with a population model, along with
Example 3 (see Examples, above), indicate that using
some population structure can be better than none, but
the boundaries of how much structure is enough remain
to be explored. One promising option is to use the
‘‘semi-mechanistic’’ approach of using flexible func-
tions in key parts of a model for which mechanistic
structure can not be assumed (Ellner et al. 1998, Ken-
dall et al. 1999).

This study has not discussed several aspects of sta-
tistical analysis that would be critical with real data,
including diagnosis of model fit and analysis of sen-
sitivity to model structure. Diagnosis of model fit can
use residual analysis, but with a state-space model there
are no point residuals; instead there are distributions
of states (or process noises) given observations. In
place of residuals, one could use the means or full
distributions of states given observations to look for
violations of assumptions, such as lack of fit to the
assumed distribution or lack of temporal independence.
Finally, although only point estimates and likelihood-
ratio tests were considered here, one could also use
Monte Carlo likelihood approximations to estimate
confidence regions in standard ways (Stuart and Ord
1991, Severini 2000).

Using population models to analyze population data
is part of the larger trend in science of using compu-
tational methods to analyze data in the framework of
mechanistic models (Smith 1992). The theoretical ar-
gument for this approach is strong, but application has
been limited by computational methods. The compu-
tational limitations are not trivial, but with continuing
advances in algorithms and computational power, the
possibility of improved experimental study of complex
ecological systems is promising.
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APPENDIX

A summary of the Markov chain Monte Carlo algorithms and kernel density estimates used in this paper is available in
ESA’s Electronic Data Archive: Ecological Archives E084-081-A1.


